# Cold & ultracold molecules - new frontiers

J. Ye, JILA

Michigan Quantum Summer School, Ann Arbor, June 18, 2008

**Precision test** 

Quantum dipolar gas



#### Quantum measurement

**Chemical reactions** 

# Why ultracold molecules?

J. Doyle *et al.*, Eur. Phys. J. D <u>31</u>, 149 (2004). Electric dipole moments: Orientation is a big deal !





Manifested at or below µK temperatures

A. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. **90**, 043006 (2003).

# Ultracold molecules - a hard challenge

"A diatomic molecule is a molecule with one atom too many!"

 Nobel Laureate <u>Arthur Schawlow</u>, co-inventor of laser and co-founder of laser spectroscopy



# Ways to make cold polar molecules

Pairing ultracold atoms (Magneto-Photo-association)



Direct cooling of ground-state molecules

Buffer gas cooling Stark or magnetic slowing

# Ultracold molecules: quantum physics

- Quantum information (strong dipolar interactions, long coherence time)
- Quantum degeneracy (e.g. BEC) (anisotropic interactions)
- Dipolar phase transition (Condensed matter system)



DeMille, Phys. Rev. Lett. **88**, 067901 (2002). H.P. Buchler *et al.*, PRL **98**, 060404 (2007). T. Koch *et al.*, Nature Phys. **4**, 218 (2008). Micheli, Brennen, Zoller, Nature Physics **2**, 341 (2006).

# Dipolar quantum gas

- Long range
- Orientation-specific interactions



#### Ultracold molecules: Test fundamental principles



# Ultracold molecules: Precision Chemistry



Controlled molecular collisions Ultracold chemical reactions

- Molecules in single quantum states, under precise control, for internal & external motions
- Unprecedented study of fundamentally important reactions (Dial the rates):
   OH + HBr, OH + H<sub>2</sub>CO, CN + O<sub>2</sub>, OH + NO, OH + OH, CN + NH<sub>3</sub>, OH + H

Higher reaction rate at lower temperature (10 K, importance for interstellar chemistry)

# Quantum gas of polar molecules

# Towards quantum gas of polar molecules

Feshbach molecule + creation

Coherent two-photon state transfer





- Single initial quantum state
- Weakly bound, non-polar

- Single final quantum state
- Deeply bound, polar



Dense ultracold deeply bound molecules  $(T \sim 100 nK, n \sim 10^{12}/cm^3)$ 

### Magnetic-field Feshbach resonance

Field-tunable scattering resonance



Channels coupled by hyperfine interaction

#### KRb Feshbach molecules

- Near-degenerate mixture of <sup>40</sup>K & <sup>87</sup>Rb (T ~100 nK)
- RF association of molecules



## Ultracold trapped KRb



#### Fermionic molecule collisional properties

Zirbel et al., Phys. Rev. Lett. 100, 143201 (2008).

Collisional processes:

- Molecule-molecule collisions
- Atom-molecule collisions

Suppressed at ultralow temperatures (fermionic character)



#### KRb photoassociation efficiency - single quantum state vs. continuum



#### Two photon spectroscopy



#### Coherent Transfer - STIRAP Ospelkaus et al., Nature Physics, in press (2008).



#### KRb potentials



#### Frequency comb-assisted transfer



# v"=0 Dark Resonance





STImulated Raman Adiabatic Passage





#### Where are we?

Efficient coherent transfer, > 7 THz in a single step

v = 0 (J = 0) in  ${}^{3}\Sigma$ , N = 2 x 10<sup>4</sup>, n = 10<sup>12</sup>/cm<sup>3</sup>,

No heating, 300 nK,  $T/T_F = 3$ 

Experimentally observed dipole moment ~0.1 Debye

Expect to reach v = 0 in  ${}^{1}\Sigma$ , (120 THz), ~ 1 Debye

Introduce anisotropic & long-range interactions

#### Frequency comb spectroscopy

Thorpe et al., Science 311, 1595 (2006); Opt. Exp. 16, 2387 (2008).





### Tomography of all degrees of freedom

Thorpe and Ye, Appl. Phys. B <u>91</u>, 397 (2008).



# Cold ground-state molecules

(from precision measurement to cold molecular collisions)

# Test of fundamental constants



# Cold OH molecules to constrain $\Delta \alpha$ / $\alpha$



Multiple transitions from the same gas cloud (Self check on systematics)

#### Molecular electronic state labeling

Heteronuclear diatomic molecules possess only axial symmetry

 different good quantum numbers than for atoms



• 
$$\Omega = |\Lambda + \Sigma|$$
  
•  $\mathbf{J} = \Omega + \mathbf{N}$ 

• Electronic potentials are labeled as  ${}^{2\Sigma+1}\Lambda_{\Omega}$ -  $\Sigma$ ,  $\Pi$ ,  $\Delta$ , ... states for  $\Lambda = 0, 1, 2, ...$ (i.e.,  ${}^{2}\Pi_{3/2}$  state has  $\Lambda=1$ ,  $\Sigma=1/2$ ,  $\Omega=3/2$ )

• Good quantum #'s are  $\Lambda$ ,  $\Sigma$ ,  $\Omega$ , J, m<sub>J</sub> (or just  $\Omega$ , J, m<sub>J</sub>)

# Basic energy structure of OH



# Stark deceleration

#### Direct manipulation of ground state molecules



Cooling by supersonic expansion (~ 1 K in a moving frame)

Phase space selection (~ 10 mK)

Applicable to a large variety of molecules

Bethlem, Berden, Meijer, Phys. Rev. Lett. **83** 1558 (1999).

# Stark Decelerator



### Experiment & Theory



Time from discharge [ms]

# Slowed molecular packet



### Slowed molecular packet



# Cold ground-state molecules

Bochinski, Hudson, Lewandowski, Meijer, Ye, Phys. Rev. Lett. **91**, 243001 (2003). Hudson et al., Phys. Rev. A 73, 063404 (2006).



#### Cold molecule based precision spectroscopy

Hudson, Lewandowski, Sawyer, Ye, PRL <u>96</u>, 143004 (2006).

Lev, Meyer, Hudson, Sawyer, Bohn, Ye, PRA <u>74</u>, 061402 (2006).

- High resolution and precision
- Systematic evaluations



# Magnetic trapping of OH

Sawyer, Lev, Hudson, Stuhl, Lara, Bohn, & Ye, Phys. Rev. Lett. <u>98</u>, 253002 (2007).



# Trapping Scheme

End view





# **Trapping Scheme**

~30 mK, 5x10<sup>3</sup> cm<sup>-3</sup>



# Permanent-Magnet Trap



NdFeB (N42SH)  $T_{op} = 120^{\circ}C$  $B_{res} = 1.24 \text{ T}$ 



# Trap Loading



# Trap Loading



#### Permanent magnetic trap of OH



#### Collision inside a trap



#### Trap Scattering



### Absolute collision cross sections



#### External electric field tunes reaction barrier

Hudson, Ticknor, Sawyer, Taatjes, Lewandowski, Bochinski, Bohn, Ye, Phys. Rev. A **73**, 063404 (2006).



**Control of cold chemical reactions; Unique dipolar interaction dynamics** 

# Special thanks

#### OH and H<sub>2</sub>CO

B. SawyerB. StuhlM. YeoD. Wang

E. Hudson (Yale)B. Lev (Illinois)H. Lewandowski (JILA)J. Bochinski (NC State)

#### KRb

S. Ospelkaus A. Pe'er K.-K. Ni J. Zirbel B. Neyenhuis M. Miranda

D. S. Jin

D. Jin, J. Bohn (JILA) P. Julienne (NIST), S. Kotochigova (Temple) H. Ritsch (Innsbruck)